Gaussian approximation in the theory of MR signal formation in the presence of structure-specific magnetic field inhomogeneities.
نویسندگان
چکیده
A detailed theoretical analysis of the free induction decay (FID) and spin echo (SE) MR signal formation in the presence of mesoscopic structure-specific magnetic field inhomogeneities is developed in the framework of the Gaussian phase distribution approximation. The theory takes into account diffusion of nuclear spins in inhomogeneous magnetic fields created by arbitrarily shaped magnetized objects with permeable boundaries. In the short-time limit the FID signal decays quadratically with time and depends on the objects' geometry only through the volume fraction, whereas the SE signal decays as 5/2 power of time with the coefficient depending on both the volume fraction of the magnetized objects and their surface-to-volume ratio. In the motional narrowing regime, the FID and SE signals for objects of finite size decay mono-exponentially; a simple general expression is obtained for the relaxation rate constant deltaR2. In the case of infinitely long cylinders in the motional narrowing regime the theory predicts non-exponential signal decay lnS approximately -tlnt in accordance with previous results. For specific geometries of the objects (spheres and infinitely long cylinders) exact analytical expressions for the FID and SE signals are given. The theory can be applied, for instance, to biological systems where mesoscopic magnetic field inhomogeneities are induced by deoxygenated red blood cells, capillary network, contrast agents, etc.
منابع مشابه
Gaussian approximation in the theory of MR signal formation in the presence of structure-specific magnetic field inhomogeneities. Effects of impermeable susceptibility inclusions.
A detailed theoretical description of the signal formation in the presence of mesoscopic structure-specific magnetic field inhomogeneities is presented in the framework of the Gaussian phase distribution approximation for two geometrical models of the field inhomogeneity sources--impermeable spheres and infinitely long cylinders. Analytical expressions for free induction decay (FID) and spin ec...
متن کاملمشخصه های آماری ذرات ضبط مغناطیسی
In magnetic recording media, the remanent magnetization loop, Mr(H)has some parameters, which explain the prperties of the medium in view of the storage density and signal-to-noise ratio. It is necessary to find the mechanism of Mr variations from the statistical characteristics of the system. We have prepared samples of single-domain ascicolar iron particles with 0.3 length, and the oriented...
متن کاملFlow simulation of gallium in a cylindrical annulus in the presence of a magnetic field for improving the casting process
Free convection flow in an enclosure filled with a congealing melt leads to the product with a nonuniform structure involving large grains. The convective flows are decreased by applying an appropriate magnetic field, obtaining uniform and small grain structures. In this work, using the finite volume method, we investigated the application of a magnetic field to the convective heat transfer and...
متن کاملAn Experimental Investigation of Magnetized Water Effect on Formation Damage
In oil industries, water injection into oil reservoirs for pressure maintenance, oil displacement, and oil recovery is a common technique. Formation damage during water injection is a major problem in this process. Formation damage from the incompatibility of formation water (FW) and injection water (IW) causes a reduction in the permeability around the injection wells. Therefore, it is necessa...
متن کاملبررسی شدت نسبی سیگنال تصاویر Magnetic Resonance در بافت رترودیسکال و عضله پتریگوئید خارجی و رابطه آن با یافتههای Magnetic Resonance Imaging
Background and Aims: Disc displacement is the most common temporomandibular joint disorder and magnetic resonance imaging (MRI) is the gold standard in its diagnosis. This disorder can lead to changes in signal intensity of magnetic resonance (MR). The purpose of this study was evaluation of correlation between relative signal intensity of MR images of retrodiscal tissue, superior and inferior ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance
دوره 163 2 شماره
صفحات -
تاریخ انتشار 2003